Copied to
clipboard

G = C426Dic5order 320 = 26·5

3rd semidirect product of C42 and Dic5 acting via Dic5/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C426Dic5, C20.38C42, (C4×C20)⋊22C4, C10.19C4≀C2, C4⋊Dic512C4, C4.Dic57C4, C20.58(C4⋊C4), (C2×C20).58Q8, C4.8(C4×Dic5), (C2×C42).7D5, C54(C426C4), (C2×C4).162D20, (C2×C20).478D4, C4.20(C4⋊Dic5), (C2×C4).42Dic10, C2.3(D204C4), (C22×C10).176D4, (C22×C4).412D10, C23.72(C5⋊D4), C4.44(D10⋊C4), C20.106(C22⋊C4), C4.22(C10.D4), C22.8(C23.D5), (C22×C20).532C22, C23.21D10.1C2, C22.36(D10⋊C4), C2.3(C10.10C42), C10.20(C2.C42), C22.12(C10.D4), (C2×C4×C20).15C2, (C2×C4).98(C4×D5), (C2×C10).61(C4⋊C4), (C2×C20).390(C2×C4), (C2×C4).71(C2×Dic5), (C2×C4.Dic5).1C2, (C2×C4).231(C5⋊D4), (C2×C10).113(C22⋊C4), SmallGroup(320,81)

Series: Derived Chief Lower central Upper central

C1C20 — C426Dic5
C1C5C10C2×C10C22×C10C22×C20C23.21D10 — C426Dic5
C5C10C20 — C426Dic5
C1C2×C4C22×C4C2×C42

Generators and relations for C426Dic5
 G = < a,b,c,d | a4=b4=c10=1, d2=c5, dad-1=ab=ba, ac=ca, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 294 in 110 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, C10, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, Dic5, C20, C20, C2×C10, C2×C10, C2×C42, C42⋊C2, C2×M4(2), C52C8, C2×Dic5, C2×C20, C2×C20, C22×C10, C426C4, C2×C52C8, C4.Dic5, C4.Dic5, C4×Dic5, C4⋊Dic5, C23.D5, C4×C20, C4×C20, C22×C20, C22×C20, C2×C4.Dic5, C23.21D10, C2×C4×C20, C426Dic5
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D5, C42, C22⋊C4, C4⋊C4, Dic5, D10, C2.C42, C4≀C2, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C426C4, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, D204C4, C10.10C42, C426Dic5

Smallest permutation representation of C426Dic5
On 80 points
Generators in S80
(1 34)(2 35)(3 36)(4 37)(5 38)(6 39)(7 40)(8 31)(9 32)(10 33)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 41)(21 55 69 71)(22 56 70 72)(23 57 61 73)(24 58 62 74)(25 59 63 75)(26 60 64 76)(27 51 65 77)(28 52 66 78)(29 53 67 79)(30 54 68 80)
(1 45 39 19)(2 46 40 20)(3 47 31 11)(4 48 32 12)(5 49 33 13)(6 50 34 14)(7 41 35 15)(8 42 36 16)(9 43 37 17)(10 44 38 18)(21 60 69 76)(22 51 70 77)(23 52 61 78)(24 53 62 79)(25 54 63 80)(26 55 64 71)(27 56 65 72)(28 57 66 73)(29 58 67 74)(30 59 68 75)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 60 6 55)(2 59 7 54)(3 58 8 53)(4 57 9 52)(5 56 10 51)(11 67 16 62)(12 66 17 61)(13 65 18 70)(14 64 19 69)(15 63 20 68)(21 50 26 45)(22 49 27 44)(23 48 28 43)(24 47 29 42)(25 46 30 41)(31 74 36 79)(32 73 37 78)(33 72 38 77)(34 71 39 76)(35 80 40 75)

G:=sub<Sym(80)| (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,31)(9,32)(10,33)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,41)(21,55,69,71)(22,56,70,72)(23,57,61,73)(24,58,62,74)(25,59,63,75)(26,60,64,76)(27,51,65,77)(28,52,66,78)(29,53,67,79)(30,54,68,80), (1,45,39,19)(2,46,40,20)(3,47,31,11)(4,48,32,12)(5,49,33,13)(6,50,34,14)(7,41,35,15)(8,42,36,16)(9,43,37,17)(10,44,38,18)(21,60,69,76)(22,51,70,77)(23,52,61,78)(24,53,62,79)(25,54,63,80)(26,55,64,71)(27,56,65,72)(28,57,66,73)(29,58,67,74)(30,59,68,75), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,60,6,55)(2,59,7,54)(3,58,8,53)(4,57,9,52)(5,56,10,51)(11,67,16,62)(12,66,17,61)(13,65,18,70)(14,64,19,69)(15,63,20,68)(21,50,26,45)(22,49,27,44)(23,48,28,43)(24,47,29,42)(25,46,30,41)(31,74,36,79)(32,73,37,78)(33,72,38,77)(34,71,39,76)(35,80,40,75)>;

G:=Group( (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,31)(9,32)(10,33)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,41)(21,55,69,71)(22,56,70,72)(23,57,61,73)(24,58,62,74)(25,59,63,75)(26,60,64,76)(27,51,65,77)(28,52,66,78)(29,53,67,79)(30,54,68,80), (1,45,39,19)(2,46,40,20)(3,47,31,11)(4,48,32,12)(5,49,33,13)(6,50,34,14)(7,41,35,15)(8,42,36,16)(9,43,37,17)(10,44,38,18)(21,60,69,76)(22,51,70,77)(23,52,61,78)(24,53,62,79)(25,54,63,80)(26,55,64,71)(27,56,65,72)(28,57,66,73)(29,58,67,74)(30,59,68,75), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,60,6,55)(2,59,7,54)(3,58,8,53)(4,57,9,52)(5,56,10,51)(11,67,16,62)(12,66,17,61)(13,65,18,70)(14,64,19,69)(15,63,20,68)(21,50,26,45)(22,49,27,44)(23,48,28,43)(24,47,29,42)(25,46,30,41)(31,74,36,79)(32,73,37,78)(33,72,38,77)(34,71,39,76)(35,80,40,75) );

G=PermutationGroup([[(1,34),(2,35),(3,36),(4,37),(5,38),(6,39),(7,40),(8,31),(9,32),(10,33),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,41),(21,55,69,71),(22,56,70,72),(23,57,61,73),(24,58,62,74),(25,59,63,75),(26,60,64,76),(27,51,65,77),(28,52,66,78),(29,53,67,79),(30,54,68,80)], [(1,45,39,19),(2,46,40,20),(3,47,31,11),(4,48,32,12),(5,49,33,13),(6,50,34,14),(7,41,35,15),(8,42,36,16),(9,43,37,17),(10,44,38,18),(21,60,69,76),(22,51,70,77),(23,52,61,78),(24,53,62,79),(25,54,63,80),(26,55,64,71),(27,56,65,72),(28,57,66,73),(29,58,67,74),(30,59,68,75)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,60,6,55),(2,59,7,54),(3,58,8,53),(4,57,9,52),(5,56,10,51),(11,67,16,62),(12,66,17,61),(13,65,18,70),(14,64,19,69),(15,63,20,68),(21,50,26,45),(22,49,27,44),(23,48,28,43),(24,47,29,42),(25,46,30,41),(31,74,36,79),(32,73,37,78),(33,72,38,77),(34,71,39,76),(35,80,40,75)]])

92 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N4O4P4Q4R5A5B8A8B8C8D10A···10N20A···20AV
order12222244444···4444455888810···1020···20
size11112211112···22020202022202020202···22···2

92 irreducible representations

dim11111112222222222222
type+++++-++-+-+
imageC1C2C2C2C4C4C4D4Q8D4D5Dic5D10C4≀C2Dic10C4×D5D20C5⋊D4C5⋊D4D204C4
kernelC426Dic5C2×C4.Dic5C23.21D10C2×C4×C20C4.Dic5C4⋊Dic5C4×C20C2×C20C2×C20C22×C10C2×C42C42C22×C4C10C2×C4C2×C4C2×C4C2×C4C23C2
# reps111144421124284844432

Matrix representation of C426Dic5 in GL4(𝔽41) generated by

402200
03200
0010
00032
,
92900
03200
00320
0009
,
1000
0100
00230
00025
,
161500
242500
0001
00400
G:=sub<GL(4,GF(41))| [40,0,0,0,22,32,0,0,0,0,1,0,0,0,0,32],[9,0,0,0,29,32,0,0,0,0,32,0,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,23,0,0,0,0,25],[16,24,0,0,15,25,0,0,0,0,0,40,0,0,1,0] >;

C426Dic5 in GAP, Magma, Sage, TeX

C_4^2\rtimes_6{\rm Dic}_5
% in TeX

G:=Group("C4^2:6Dic5");
// GroupNames label

G:=SmallGroup(320,81);
// by ID

G=gap.SmallGroup(320,81);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,1123,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=c^5,d*a*d^-1=a*b=b*a,a*c=c*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽